Abstract

The transport mechanism of chloride ions in concrete is relatively complicated since the erosion process is influenced by many factors. To investigate the effect of exposure conditions on the chloride ion diffusion property, three exposure conditions (long-term immersion in static sodium chloride solution, long-term immersion in circulating sodium chloride solution and dry–wet cycles in circulating sodium chloride solution) were considered in chloride ion diffusion experiments. Experimental results indicated that the chloride ion content at a certain depth increased with erosion age. The chloride ions in static sodium chloride solution transported more rapidly than those under dry–wet cycle conditions. Moreover, the chloride ion content of concrete under dry–wet cycles of the circulating sodium chloride solution was slightly higher than that under long-term immersion in the circulating solution. Based on Fick’s second law, empirical equations for the chloride diffusion coefficient and chloride content at the surface of concrete were proposed by fitting experimental data, and the values of correlation coefficients of different exposure conditions were suggested. By comparison with the experiment results, it was verified that the calculation formula had better applicability. This method could be used to predict and analyze the chloride ion content under different exposure conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call