Abstract
This paper takes a low-energy building in Changchun, China, as an object to test and study the characteristics of two heating modes, AC/DC (Alternative current/Direct current) switching and AC/DC synthesis, from the perspectives of temperature change, irradiation intensity, power generation, electricity consumption, etc. Firstly, the experimental research was conducted under two heating cable modes by establishing mathematical models and a test rig, and it was found that the photoelectric conversion efficiency on sunny, cloudy, and overcast days was 18%, 14.5%, and 12%, respectively. A simulation model was established by TRNSYS to run an ultra-low-energy building throughout the year. It was found that the highest and lowest monthly power generation occurred in February and July, respectively. The annual power generation of the system was 6614 kWh, and the heating season power generation was 3293.42 kWh. In the current research, the DC electricity consumption was slightly higher than the AC electricity consumption. Under conditions of similar radiation intensity and power generation, the indoor temperature of the AC/DC synthesis cable heating mode were 1.38% higher than the AC/DC switching heating able mode, and the electricity consumption were 10.9% and 4.76% higher, respectively, than those of the AC switching heating cable mode. This is of great significance for clean-energy heating, energy savings, and emissions reduction in northern China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.