Abstract

This paper examines the experimental study on a line axis concentrating solar energy collector for water heating. The system considered consists of cylindrical solar radiation concentrator with a black coated tubular absorber positioned along its axis. A cold water tank is placed above the collector and a hot water tank positioned below it such that fluid flows in and out of the set up. Solar radiation absorber inlet header is connected to the cold water tank while its outlet header is connected to the hot water tank. These major components are supported by angle iron raised at a distance from the ground that depends on the location and function. Valves are used at strategic points on the connecting pipe lines to isolate the flow of water. When water is poured into the cold water chamber, and the control valve turned on, the water flows under gravity into the receiver/absorber tube. At the absorber section, heat is transferred from the steel tube to the circulating water and is consequently heated. The heated water, then flows into the returning tube against gravity, thereby restricting the heated water from flowing into the storage tank. At this stage, thermo-siphoning effect comes into play. As the temperature of the water increases, its density reduces while the mass remains constant in order to balance the effect of the reduction in density. Thus, there is a resultant increase in volume which consequently pushes the water level further along the returning pipe. Further increase in temperature reduces the water density and increases the volume of the water, thereby causing the heated water to flow into the insulated tank. Several experimental tests were carried out under meteorological condition at the Federal University of Technology Owerri, Nigeria at three different mass flow rates of 0.001kg/s, 0.002kg/s and 0.003kg/s. The solar water heater was tested while oriented in the East–West and North –South directions in order to determine the effects of orientation on the performance. Results obtained showed that a maximum temperature of 69.5°C, corresponding to 34.5°C increase in water temperature and a maximum instantaneous efficiency of 51.01% is possible. The aim of the study is to design a cheaper solar energy system capable of reducing energy bill within the developing countries of the world.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.