Abstract

Water management is important for improving the performance and stability of proton exchange membrane fuel cells (PEMFCs) for space applications. An in situ visual observation was conducted on the gas–liquid two-phase flow in the cathode channels of a PEMFC in short-term microgravity condition. The microgravity environment was supplied by a drop tower. A single serpentine flow channel with a depth of 2mm and a width of 2mm was applied as the cathode flow field. A membrane electrode assembly comprising of a Nafion 112 membrane sandwiched between gas diffusion layers was used. The anode and cathode were loaded with 1mgcm−2 platinum. The PEMFC shows a distinct operating behavior in microgravity because of the effect of gravity on the two-phase flow. At a high water production regime, cell performance is enhanced by 4.6% and the accumulated liquid water in the flow channel tends can be removed in microgravity conditions to alleviate flooding. At a low water production regime, cell performance deteriorates by 6.6% and liquid aggregation occurs in the flow channel because of the coalescence of dispersed water droplets in microgravity conditions, thus squeezing the flow channel. The operating behavior of PEMFC in microgravity conditions is different from that in normal gravity conditions. Further studies are needed on PEMFC operating characteristics and liquid management for space applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.