Abstract

The aim of this work was to analyze the influence of cutting condition and tool geometry on surface roughness when slot end milling AL2014-T6. The parameters considered were the cutting speed, feed, depth of cut, concavity and axial relief angles of the end cutting edge of the end mill. Surface roughness models for both dry cutting and coolant conditions were built using the response surface methodology (RSM) and the experimental results. The results showed that the dry-cut roughness was reduced by applying cutting fluid. The significant factors affecting the dry-cut model were the cutting speed, feed, concavity and axial relief angles; while for the coolant model, they were the feed and concavity angle. Surface roughness generally increases with the increase of feed, concavity and axial relief angles, while concavity angle is more than 2.5°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call