Abstract
Speckle is a wave interference phenomenon that has been studied in various fields, including optics, hydrodynamics, and acoustics. Speckle patterns contain spectral information of the interfering waves and of the scattering medium that generates the pattern. Here, we study experimentally the speckle patterns generated by the light emitted by two types of semiconductor lasers: conventional laser diodes, where we induce low-coherence emission by optical feedback or by pump current modulation, and coupled nanolasers. In both cases, we analyze the intensity statistics of the respective speckle patterns to inspect the degree of coherence of the light. We show that the speckle analysis provides a non-spectral way to assess the coherence of semiconductor laser light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.