Abstract

Cardiac single ventricle birth defects are a leading cause of death among birth defects for children under one years of age. Fontan palliation is the current clinical treatment for patients with these birth defects and result in a single working ventricle to power the entire system by forming a total cavopulmonary connection (TCPC). A significant number of patients with univentricle Fontan circulation develop Fontan failure caused by the inability of the single ventricle to power the Fontan circulation. The use of mechanical cavopulmonary assist device has been proposed as a treatment for these patients. Particularly, the application of a percutaneous, catheter driven, viscous impeller pump (VIP) has been identified to provide promising cavopulmonary support [1]. Computational Fluid Dynamics (CFD) simulations have demonstrated that this VIP pump can satisfactorily augment cavopulmonary blood flow at pressures sufficient to overcome increased downstream resistance. Experimental characterization of flow induced by the VIP in the TCPC, including detailed flow structures and hemodynamic performances, needs to be conducted for minimizing risk of hemolysis and thrombosis while maximizing the pump performance, and for validating the results from high-fidelity CFD simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.