Abstract
A study of post-dryout heat transfer was performed with a directed heated smooth tube and rifled tubes using vertical R-134a up-flow to investigate the heat transfer characteristics in the post-dryout region. Three types of rifled tube having different rib height and width were used to examine the effects of rib geometry and compare with the smooth tube, using a mass flux of 70–800 kg/m 2 s and a pressure of 13–24 bar (corresponding to an approximate water pressure of 80–140 bar). Wall temperature distribution in all tubes was strongly dependent on pressure and mass flux. Wall temperatures of the rifled tubes in the post-dryout region were much lower than for the smooth tube at same conditions. This was attributed to swirl flow caused by the rib. Thus, the thermal non-equilibrium, which is usually present in the post-dryout region, was lowered. The empirical correlation of heat transfer in the smooth tube of the post-dryout region was obtained. The heat transfer correlation for rifled tubes was also obtained as a function of rib height and width with the modification of the smooth tube correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.