Abstract

This paper investigates a clean and highly efficient domestic stove burner composed of a flat flame burner for cooking and water heating. The feasibility of the flat flame burner is experimentally verified by demonstrating that the flame is stabilized by a porous metal medium and by comparison with a typical Bunsen flame burner. The flame appearance, temperature distribution, relative thermal efficiency and pollution emissions in terms of Emission Index of CO (EICO) and Emission Index of NOx (EINOx) were measured and analyzed. The results show that the operating range, turndown ratio, and pollution emissions of the flat flame burners are superior to those of traditional Bunsen flame burners. The heat transfer and efficiency for both the jet flame burner and the flat flame burner can be evaluated using analytical and numerical methods. Furthermore, in contrast to traditional Bunsen flame burners, the efficiency and pollution emissions of flat flame burners are not strongly affected by the distance between the cool boundary of pot or pan and the burner exit. For domestic stove applications in particular, where different sized pots and pans are used, the efficiency and pollution emissions can be well controlled with a flat flame burner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.