Abstract

The Tavis-Cummings model is intensively investigated in quantum optics and has important applications in generation of multi-atom entanglement. Here, we employ a superconducting circuit quantum electrodynamic system to study a modified Tavis-Cummings model with directly-coupled atoms. In our device, three superconducting artificial atoms are arranged in a chain with direct coupling through fixed capacitors and strongly coupled to a transmission line resonator. By performing transmission spectrum measurements, we observe different anticrossing structures when one or two qubits are resonantly coupled to the resonator. In the case of the two-qubit Tavis-Cummings model without qubit-qubit interaction, we observe two dips at the resonance point of the anticrossing. The splitting of these dips is determined by Δ λ=2g12+g32, where g1 and g3 are the coupling strengths between Qubit 1 and the resonator, and Qubit 3 and the resonator, respectively. The direct coupling J12 between the two qubits results in three dressed states in the two-qubit Tavis-Cummings model at the frequency resonance point, leading to three dips in the transmission spectrum. In this case, the distance between the two farthest and asymmetrical dips, arising from the energy level splitting, is larger than in the previous case. The frequency interval between these two dips is determined by the difference in eigenvalues (Δ λ=ε 1+-ε 1-), obtained through numerical calculations. What we believe as novel and intriguing experimental results may potentially advance quantum optics experiments, providing valuable insights for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call