Abstract

Urbanization and mass construction of housing will increase the consumption of cement and available natural resources such as sand and water. The production of cement generated from various industries leads to the emission of carbon dioxide gas in huge quantities into the atmosphere and creates serious problems in handling and disposal. So, the replacement of conventional materials with alternative materials for the preparation of concrete is needed. If the alternative cementitious and industrial waste materials are found suitable in replacing the ingredients of concrete then it can reduce the cost of construction. The present paper represents an experimental study of low carbon emission alternative concrete by replacing conventional concrete materials with alternative materials like geopolymer as binding material, copper and ferrous slag as fine aggregates, steel slag as coarse aggregates, and alkaline solution as an activator. Study made to examine the properties of low carbon emission alternative concrete proposed. The fresh and hardened state characteristics of low carbon emission alternative concrete are evaluated for both oven and ambient curing conditions. It is noticed that the time taken to achieve the strength by oven curing is less than ambient curing but had no major difference in load-carrying capacity and the results obtained are in good concurrence with conventional concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call