Abstract

A series of basic transport physics experiments are performed in Columbia Linear Machine, which generates a steady-state collisionless cylindrical plasma column in uniform axial magnetic field. The focus is on the isotopic scaling of ion thermal conductivity due to ion temperature gradient-driven modes. The experiments are performed using two different gases: Hydrogen and Deuterium. The results indicate reduction of thermal transport with increasing isotopic mass leading to a scaling K[perpindicular] ~ Ai-0.5, where Ai is the mass number of the isotope of hydrogen. This inverse gyro-Bohm scaling is similar to the tokamak results, but is in stark contradiction to most present theoretical models predicting Bohm (Ai0) or gyro-Bohm (Ai0.5) scaling. A series of experiments to explore the physics basis of this scaling has been also performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.