Abstract

This paper describes experiments in a subscale axial turbine stage equipped with an axially overlapping radial-clearance seal at the disk cavity rim and a labyrinth seal radially inboard which divides the disk cavity into a rim cavity and an inner cavity. An orifice model of the rim seal is presented; values of ingestion and egress discharge coefficients based on the model and experimental data are reported for a range of cavity purge flow rate. In the experiments, time-averaged pressure distribution was measured in the main gas annulus and in the disk cavity; also measured was the time-averaged ingestion into the cavity. The pressure and ingestion data were combined to obtain the discharge coefficients. Locations on the vane platform 1 mm upstream of its lip over two vane pitches circumferentially defined the main gas annulus pressure; in the rim cavity, locations at the stator surface in the radially inner part of the “seal region” over one vane pitch defined the cavity pressure. For the sealing effectiveness, two locations in the rim cavity at the stator surface, one in the “mixing region” and the other radially further inward at the beginning of the stator boundary layer were considered. Two corresponding sets of ingestion and egress discharge coefficients are reported. The ingestion discharge coefficient was found to decrease in magnitude as the purge flow rate increased; the egress discharge coefficient increased with purge flow rate. The discharge coefficients embody fluid-mechanical effects in the ingestion and egress flows. Additionally, the minimum purge flow rate required to prevent ingestion was estimated for each experiment set and is reported. It is suggested that the experiments were in the combined ingestion (CI) region with externally induced (EI) ingestion being the dominant contributor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.