Abstract

While it is widely recognized that ingestion of hot gas from the main annulus of axial gas turbine stages into rotor-stator disk cavities depend strongly on the unsteadiness of the prevailing flow field, the large computational effort needed to simulate the flow field renders its use in the design of turbine internal air system and seals difficult. As an alternative, considerable effort has been devoted in recent years to develop simple orifice models of disk cavity rim seals based on time-averaged flow information; these models contain empirical discharge coefficients for ingestion into and egress from the cavities. The present experimental work in a subscale axial turbine stage reports a simple orifice model of an axially-overlapping radial-clearance seal at the disk cavity rim and values of the discharge coefficients over a range of purge flow rate supplied to the cavity. In the experiments, the ingestion process was dominated by the main gas annulus flow. Time-averaged static pressure distribution was measured in the main annulus and in the disk cavity; the driving force for ingestion and egress was taken to be the pressure differential between the main annulus and the rim cavity at prescribed locations. Time-averaged ingestion was measured using the tracer gas technique; the pressure and ingestion data were combined to obtain the ingestion and egress discharge coefficients at several purge flow rates. The location on the vane platform 1mm upstream of its lip represented the main gas annulus pressure in the calculation of discharge coefficients. In the rim cavity, two locations on the stator, one in the ‘seal region’ and the other slightly inward radially, were prescribed to represent the rim cavity pressure as well as the sealing effectiveness. Two corresponding sets of ingestion and egress discharge coefficients are reported for the various purge flow rates. The ingestion discharge coefficient obtained using the seal region location in the rim cavity decreased as the purge flow rate increased; the corresponding egress discharge coefficient increased with purge flow rate. For the rim cavity location slightly inward radially from the seal region, the egress discharge coefficient maintained the same trend; however, the ingestion discharge coefficient decreased only slightly as the purge flow rate increased. It is suggested that the seal region location in the rim cavity is the more appropriate location in calculating the rim seal discharge coefficients. The ratio of ingestion to egress discharge coefficients exhibited considerable variation with purge flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.