Abstract

There is a growing interest in the utilization of hydrogen (H2), as a zero-carbon fuel, in internal combustion engines (ICEs). Accordingly, the primary focus of this study is to investigate low-pressure H2 jet dynamics, which play a vital role in air-fuel mixing especially in direct injection (DI) engines. High-speed z-type schlieren imaging is employed in a constant volume chamber to study the effect of nozzle geometry (single-hole, double-hole, and multi-hole), pressure ratios (PR = injection pressure (Pi)/chamber pressure (Pch)), injection angle (10°, 15°, and 20°), and injection duration (ID) on the H2 jet characteristics. Image post-processing is executed in MATLAB and Python to extract the H2 jet characteristics, including penetration and cross-sectional area. The novelty stems from the comprehensive investigation of H2 jet dynamics and impingement phenomenon under various engine-like conditions. The results indicate that apart from the fact that higher pressure ratios (PRs) improve the air-fuel mixing, the single-hole nozzle induces the fastest H2 jet penetration and the smallest cross-sectional area. Conversely, the double-hole nozzle leads to the slowest penetration and the most expansive cross-sectional area. The performance of the multi-hole nozzle falls between that of the single-hole and double-hole nozzles. Additionally, changing the injection angle results in jet-piston impingement at the periphery, leading to higher H2 concentration in those areas. This negatively affects the formation of an optimal air-fuel mixture. It is also found that changing the injection duration (ID) has no noticeable impact on the H2 jet's behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.