Abstract

ABSTRACT With increased length of the crest in a certain width range, the labyrinth weirs increase the discharge capacity. In this study, a laboratory flume was used with a length of 8 m and a width and height of 0.6 m, in which the hydraulic loss of linear/non-linear, labyrinth, triangular, and trapezoidal weirs were investigated. Dimensional analysis using the Buckingham methodology showed that the discharge coefficient (Cd) is a function of parameters such as hydraulic head ratio (Ht/P), weir shape factor (Sf), and hydraulic loss ratio (Hf/P). The results showed that the ATRL weir has a lower discharge coefficient than the ALR by 44% and ATPL a lower discharge coefficient than ALR by 50%. The ATRL weir has a higher hydraulic loss than ALR by 2300% and a higher hydraulic loss than ATPL by 2000%. The TRL weir has a higher hydraulic loss than LR by 4900% and a higher hydraulic loss than TPL by 5700%. The TRL weir has a lower discharge coefficient than LR by 41% and TPL by 43%. The best correlation with the Cubic statistical model was obtained in the TPL weir in terms of discharge coefficient and in the ALR weir in terms of hydraulic loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.