Abstract
Turbulent forced convection heat transfer and friction of Al2O3–water nanofluid flowing through a concentric tube U-bend heat exchanger with and without helical tape inserts in the inner tube were studied experimentally. The experiments were conducted in the Reynolds number range from 3000 to 30,000, volume concentrations of 0.01%, 0.03% and helical tape inserts of p/d=5, 10, 15 and 20. The results indicate that an increase in Reynolds number and Prandtl number yields to an increase in the average Nusselt number, and augmentation of thermal conductivity in the nanofluid contributes to heat transfer enhancement. The Nusselt number of entire pipes for 0.03% concentrations of nanofluid with helical tape inserts of p/d=5 shows an enhancement of 32.91%, as compared to water. The friction factor for the entire inner tube for 0.03% concentration of nanofluid with helical tape inserts of p/d=5 has increased by 1.38-times, as compared to water; in general and consistent with theory, the pressure drop in the inner tube increases with an increase in nanoparticle volume concentration and aspect ratio of the inserts. The empirical correlations for the Nusselt number and friction factor are obtained as functions of the Reynolds number, Prandtl number, volume concentration and aspect ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.