Abstract

With the reduction in size of electronic devices, the problem of efficient cooling is becoming more and more severe. Boiling heat transfer in microchannels is fast emerging as a promising solution to the problem. In the present work, microchannels were fabricated on a silicon wafer. A chrome-gold micro-heater was integrated and characterized on the other side of the wafer. The change in resistance of the micro-heater in the temperature range of 20 °C – 120 °C was found to be within 10%. Deionized water was used as working fluid in microchannel. The single-phase pressure drop across the microchannel was found to increase linearly with increasing flow rate in confirmation with conventional laminar flow theory. Also, the pressure drop decreases with an increase in heat input due to a reduction in viscosity. The study was extended to two phase flow with flow rate and heat flux as the control parameters. The onset of two phase flow, at a given heat flux, with a decrease in flow rate, can be identified by the departure of linear pressure drop to non-linearity; this point was also confirmed through visual observation. In two-phase region of flow, pressure drop was found to increase initially, passes through a maximum and then decreases, with a decrease in flow rate. The experiments are performed for several heat fluxes. Both the onset of two phase and maximum pressure drop in the two phase region shifts to higher flow rates with an increase in heat input. Such detailed experimental results seem to be missing from the literature and are expected to be useful for modeling of boiling heat transfer in microchannels. Another pertinent observation is presence of instability in two-phase flow. It was found that at higher flow rate and heat flux instability in two-phase flow was more. An attempt to record these instabilities was made and preliminary data on their frequency will be presented. This study may help to choose suitable operating conditions for a microchannel heat sink for use in electronics cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.