Abstract
Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO) and nanofiltration (NF) membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration = 65 mg/L, feed temperature = 39°C and pressure = 8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl) in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising.
Highlights
Large quantities of wastewater which contains toxic organic residues are generated from the textile and dye manufacturing processes
Results and corresponding figures are presented in a way to view, on the same plot, the performance of reverse osmosis (RO) and NF membranes utilized in the present work
Results at operating conditions of pH = 8.3, feed temperature = 39°C and pressure = 8 bar showed that when dye concentration was increased from 50 mg/L to 65 mg/L, the dye removal with RO membrane was increased from 96% to 97.2% for acid red dye, respectively, and with NF membrane, the acid dye removal was increased from 93.77% to 97.2%, respectively
Summary
Large quantities of wastewater which contains toxic organic residues are generated from the textile and dye manufacturing processes. Synthetic dyes are considered the most difficult to treat because they contain complex aromatic molecular structures, which make them more stable and more difficult to be biodegraded [1,2]. Due to their chemical structure, dyes are resistant to fading on exposure to light, water, and many chemicals [3]. There are many structure varieties such as acidic, basic, disperse, azo, diazo, anthroquinone based, and metal complex dyes. These dyes are very stable and can be decomposed only at temperatures higher than 200°C. Synthetic dyes often receive considerable attention from researchers in textile wastewater treatment processes [4]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have