Abstract
This paper presents the results of experimental studies of the deformed state distribution evolution of carbon fiber reinforced plastic surface layers under tension. Structural spatial deformation elements evolve as the total deformation increases. The size of the samples of carbon fiber is 250 × 12 × 1.5 mm. The matrix of the composite is the two-component epoxy compound Resin 530+. Filler composite is the unidirectional carbon fabric Tape 530. The layered deformation distribution on the surface of the sample changes into a more uniform distribution. The laminated distribution is characterized by localized deformation foci with dimensions of 2 ÷ 6 mm and a low deformation value. Homogeneous distribution is characterized by finely dispersed regions of local deformations with dimensions less than 1 mm. Local foci of deformations do not merge in the macro-region on the surface of the CFRP, which indicates a uniform distribution of deformations in the composite until destruction. The process of destruction of carbon fiber begins when the total deformation value reaches 1.8%.DOI 10.14258/izvasu(2018)1-10
Highlights
This paper presents the results of experimental studies of the deformed state distribution evolution of carbon fiber reinforced plastic surface layers under tension
Local foci of deformations do not merge in the macro-region on the surface of the CFRP, which indicates a uniform distribution of deformations in the composite until destruction
Заключение Экспериментальные исследования in situ эволюции во времени распределения деформации растяжения образца из углепластика позволили выявить, что с ростом степени общей деформации образца при испытании происходит эволюция пространственных структурных элементов деформации от слоистого распределения очагов локальных деформаций на поверхности образца с низкими значениями деформации в области этих очагов на более однородное распределение деформации на поверхности
Summary
Local foci of deformations do not merge in the macro-region on the surface of the CFRP, which indicates a uniform distribution of deformations in the composite until destruction. Для оценки прочности композиционных материалов используют критерии предельных состояний [6,7,8]. При этом не учитываются микромеханические особенности процессов перехода из одного состояния композиционных материалов в другое [8, 9].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.