Abstract

AbstractThe present paper studies the physics of the breach erosion process, particularly, the breach initiation process in over-topped landslide dams. Due to great complexities involved, only homogeneous landslide dams are considered. The flume experiments of dam overtopping are conducted to study the breach growth process. And in order to reveal the effects of the seepage during the breach development, the permeability characteristics of the dam materials are also taken into consideration. With the experimental observation, the details of the breach growth are examined, and the whole breach process could be distinguished into five stages, i.e., Stage I, the seepage erosion, Stage II, the formation of the initial breach, Stage III, the erosion toward the head, Stage IV, the expansion and incision of the breach, and Stage V, the re-equilibration of the river channel through the breach. It is shown that once triggered the entire breach process goes continually without stop, which highlights the significant impact of the early stages on the later deformation of the dam. Evidence shows that the initial breach of the dam is most likely to take place in the downstream slope of the dam, near the upper edge of the seepage face. The experimental results show a “headcut” mechanism of the breach initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call