Abstract

Breaching is the most frequent form of embankment failure in the world. Due to overtopping, an embankment starts to breach when part of the embankment actually breaks away, leaving an opening for water to flood the land protected by the embankment. A breach can be a sudden or gradual failure that is caused by surface erosion and/or headcut erosion in the embankment. The magnitude and extent of the losses depend highly on the rate of breaching of the embankment, which determines the discharge through the breach and the speed and rate of inundation of the valley or polder. Therefore, modelling of the breach evolution in embankments is of significant interest for damage assessment and risk analysis. It is also important for the development of early warning systems for dike and dam failures and of evacuation plans for people at risk. The breach flow plays an important role in the embankment breaching process, coupling the hydraulic process and the sediment transport process. During the breaching process, the flow overtops the entire embankment crest and generates the breach channel in the initial phase of the breach development. As the breach further develops, the breach flow goes only through the breach channel due to the decrease of the upstream water level. The breach flow can thus be classified as compound weir flow and weir flow, each having own special characteristics. In a breach, the helicoidal flow accelerates the sediment undermining at the toe of the breach slopes and widens the breach in the lateral direction of the embankment. A triangular hydraulic jump happens when the breach flow changes from supercritical flow into subcritical flow, with a triangular critical area at the toe of the breach. The triangular hydraulic jump works as a driving force to the headcut erosion in the breaching process and the scour hole development at the toe of embankment. According to the hydraulic energy loss in the breach, the discharge coefficients are deducted for both weir flow condition and compound weir flow condition. The resulting discharge coefficients can be used in the calculation of the breach discharge in a breach model. In the present study, five runs of breach experiments were conducted in a relative large laboratory flume. The experimental results clearly expose the hydrodynamic process and the erosion process in the breaching of the cohesive embankment. The breaching starts with the initial erosion of the embankment surface washing away the embankment surface. Due to the surface erosion at the toe of the embankment, the headcut erosion is stimulated on the embankment slope. While headcut migration stimulates the breach to develop in longitudinal direction, the lateral erosion triggers the breach to widen in lateral direction. Three types of erosion (surface erosion, headcut erosion and lateral erosion) contribute to the breach erosion process in the embankment, however, the breach flow is the driving force for the erosion. Sediment deposition in the breaching process, generally ignored in the embankment breaching studies, is also of importance. A mathematical model has been developed that couples weir flow and erosion (surface erosion, headcut erosion and lateral erosion). The breaching process is simplified into initial development, deepening development and widening development, corresponding with surface erosion, headcut erosion and lateral erosion, respectively. As the link between flow and embankment material, erosion plays a key role in the embankment breach model. Mathematical descriptions of the headcut migration and the lateral migration rate have been developed to simulate the breaching process in cohesive embankments. The headcut erosion and the lateral erosion are considered to occur in the form of clay blocks instead of in the form of individual clay particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.