Abstract

This study addresses flutter that can occur in compressors when operating at high relative incidence. Studies are performed on a subsonic annular compressor cascade containing a sector of blades that can be subjected to controlled torsional oscillation. Measurements taken on the centrally located blade are used to study the unsteady surface pressures developed. Three large mean incidences are considered to characterize the aeroelastic performance. Aerodynamic damping is calculated for each test condition and its variation due to interblade phase angle (IBPA), reduced frequency, and incidence is studied. The source of stability or instability is traced to the nature of unsteady pressures. When the incidence is below the static-stall limit, an increasing incidence is found to exhibit aeroelastically more stable performance, whereas beyond the limit, the stability worsens. For the latter, the amount of improvement in stability by increasing reduced frequency is less compared to the former and its variation with IBPA is not as regular owing to the associated large uncertainty. The nonlinearity effects were found to be relatively higher for this case, especially from the aft region of the suction surface. It is also found that the phase of the local fluctuating pressure and its location on the chord has a decisive influence on the aerodynamic damping and its trends with respect to various parameters are discussed. The results are expected to be useful in the assessing aerodynamic damping trends in relation to the pressure phase variations in specific regions along the chord.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.