Abstract

Bifacial photovoltaic technology is considered an emerging and promising PV technology. However, the unavailability of proven field data or efficient models prevents the stakeholders from going ahead with this technology. The currently available bifacial performance models have limitations; they are location specific, for a single bifacial PV module alone, or ground-level installed bifacial PV only. This paper develops an experimentally validated view factor-based optical model using the Cross-string rule to predict the power output and bifacial gain for bifacial PV power plants with good accuracy and low computation power and time. An optimal model for the best performance of bifacial PV at any location was also suggested by optimizing the parameters like the pitch, height of installations, and slope. The results show that the year-round performance of bifacial PV in cities in India's five climatic zones is 30.54%–34.93% higher than the monofiacial PV panels at an average ground albedo of 30%. Bi-annual tracking improved a bifacial PV's overall power output and bifacial gain. The financial indicators like Levelised cost of energy, Net present value, Discounted payback period, and Internal rate of return indicate higher financial gain from the bifacial PV power plant compared to monofacial PV power plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call