Abstract

A three factor 2-level designed set of experiments was performed to determine the effects of inlet flow rate, temperature, and current density on impurity particle behavior in electrolyte and the associated distribution on the cathode in copper electrorefining. Laser-Induced Breakdown Spectroscopy (LIBS) was used to measure the concentration of impurities on the cathode. The results of the experiments were statistically analyzed using Minitab. The inlet flow rate was identified as the most significant factor. All three factors and their two-factor interactions have a significant effect on impurity concentration on the cathode. The impurity concentrations in corner positions of cathodes had higher impurity levels than those in the center position of cathodes. The current density exerts more effect on both impurity concentrations at corner positions than at the center position. A possible explanation for the phenomena observed is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.