Abstract
The objective of this study is to investigate the feasibility of raw biogas combustion in a state-of-the-art Sideway Faced Porous Radiant Burner (SFPRB). Combustion takes place in the circular double-layered SFPRB composed of Silicon Carbide (SiC) and Alumina (Al2O3) porous zones. The experimental investigations were performed in the input power range of 5–10 kW and within the stable equivalence ratio range of 0.75–0.97. A detailed study on the impact of these operational conditions on the thermal behaviour of SFPRB in terms of temperature distribution, radiation efficiency and emission characteristics are presented. Both gaseous and solid phase temperatures over the surface of the burner were found to increase with rise in input power. Heat distribution across the burner was found to be uniform for all the cases. Measured values of CO and NOx emissions were found to increase with increase in input power and equivalence ratio and reached maximum of 165 ppm and 8.2 ppm, respectively. The maximum radiation efficiency of 33% was found at 5 kW input power and 0.97 equivalence ratio. The overall assessment showed that the newly developed SFPRB was capable of providing efficient combustion of raw biogas in the lean fuel-air mixture range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.