Abstract

Abstract. Foil bearings are self-acting hydrodynamics bearings used to support lightly loaded high speed rotating machinery. The advantages that they offer to process fluid lubricated machines usingworking fluid as a lubricant (ambient air) physically non-contacting high speed operation. Foil bearings have been considered as an alternative to conventional bearings with the capacity to cater for high-speeds and hostile environment (high temperature). However, the lack of load carrying capacity at relatively lower speeds limits their applications in heavy turbo machinery and as such are highly suitable in lightly loaded, high speed turbo machinery like small gas turbines.This paper discusses the design and assessment of dynamic characteristics in terms of load carrying capabilities as a function of speed, gap between the bearing and the runner as well as shape of foils for an air foil thrust bearing. The effects of various bearing parameters like foil thickness, number of foils fixed circumferentially and along the axis of rotation and with foil geometry configuration. Characteristics of performance defined essentially in terms of load carrying capabilities and static stiffness have been used for evaluation. Experiments were conducted both for angular foils (with inner edge height less than outer edge height) and square foils by varying number of foils. The experimental results shows that the effect of foil configuration enhances the load carrying capabilities of air foil thrust bearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call