Abstract
In the horizontal emplacement concept (KBS-3H) for the disposal of radioactive waste, which is being developed in Sweden and Finland, copper canisters will be surrounded by bentonite buffer and placed in perforated steel containers in long horizontal boreholes in the crystalline bedrock, at a depth of ≈500 m. Under the chemical conditions in a deep repository, it is possible that the release of iron from the steel containers could influence the physico-chemical properties of the bentonite, for example, by exchange of the interlayer ions. In order to gain further insights into this process, an experimental study was undertaken, to investigate the mode of iron uptake into bentonite and the extent of changes induced in the basic physico-chemical properties of bentonite. The samples were taken from long-term anaerobic corrosion tests of carbon steel or cast iron in compacted bentonite (Na/Ca-bentonite: Volclay MX-80, ∼4% Fe 2O 3) in contact with a simple artificial groundwater at 30 °C or 50 °C. A range of analytical techniques was applied to samples of corrosion product on carbon steel and cast iron and to the bentonite surrounding the corroding specimens. Corrosion products and bentonite samples were analysed using scanning electron microscopy (SEM), electron microprobe analysis (EPMA), Raman spectroscopy, X-ray diffraction (XRD) and Mössbauer transmission spectroscopy. In addition, the bentonite samples were analysed using Fourier transform infra-red spectroscopy (FTIR), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) and selected area electron diffraction (SAED), exchangeable cation analysis and cation exchange capacity (CEC) measurements. Hydraulic conductivity and swelling pressure were also measured. From visual observation, the corrosion product formed on the carbon steel in bentonite was less voluminous than that formed on steel in artificial porewaters with no bentonite, although previous work showed that the corrosion rates were slightly higher in the presence of bentonite. The Raman spectroscopy analysis showed that corrosion products on the surface of carbon steel and cast iron consisted of an inhomogeneous mixture of magnetite, hematite and goethite. The predominant species was magnetite. In the bentonite, the concentration of iron decreased with increasing distance away from the iron–bentonite interface, with local iron concentrations as high as 20 wt% in some experiments. The total iron content of the bentonite in contact with corroding carbon steel wires increased by several percentage points during the experiments and the cation exchange capacity of the bentonite was reduced. After contact with corroding steel wires the hydraulic conductivity of MX-80 increased substantially. The results of the analyses were consistent with ion exchange of Fe 2+ ions with Na + ions in the montmorillonite interlayer positions but the exact chemical location of all the additional Fe 2+ ions is currently uncertain. There was no evidence for the transformation of montmorillonite to an iron-rich clay mineral phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.