Abstract

The influences of the pulse off-time on the breakdown voltage of the first pulse and the stable pulse discharge (having repeatedly undergone a process of ignition, maintenance, and extinction) are experimentally investigated in a pulse-modulated radio-frequency atmospheric pressure argon discharge. The experimental results show that the first pulse discharge breakdown voltage decreases, but the stable pulse discharge breakdown voltage increases with increasing the pulse off-time. In a large region of the pulse off-time, the luminescence property of the initial breakdown stage is studied using a high speed camera. The captured images at different pulse off-times demonstrate that the gas breakdown exhibits five key characteristics: single-point random breakdown, multi-point random breakdown, stable uniform breakdown, stable glow mixed with pattern breakdown, and stable nonuniform pattern breakdown. The physical reasons for these results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call