Abstract
In this paper, a 3-D thermomechanical model of through-silicon vias (TSVs) has been analyzed and verified with in situ microscale strain measurements by synchrotron X-ray microdiffraction. Thereafter, a comprehensive stress/strain analysis on copper pumping and back-end-of-line (BEOL) cracking issues has been carried out. In addition, a design-of-experiments-based approach has been used to understand the effect of various parameters on copper pumping and BEOL stress. The results show that the smaller TSV diameter and thinner silicon die help reduce the copper pumping and thus mitigate BEOL stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.