Abstract

This paper offers an experimental robustness analysis of a semi-active tuned vibration absorber (TVA) subject to structural mass off-tuning, which occurs frequently in practical applications of TVAs. One of the critical problems of a conventional TVA is off-tuning or miss-tuning because off-tuned TVAs may amplify the vibrations of the primary structure. This study intends to evaluate how well semi-active TVAs are able to adapt to structural mass changes (mass off-tuning) as compared with passive TVAs. To this end, a test apparatus was built to represent a two-degree-of-freedom structure model coupled with a TVA. The semi-active TVA considered in this study employed a magneto-rheological (MR) damper as its damping element to enhance overall performance. Using this test apparatus, a series of tests were conducted to identify the optimal tuning parameters of the TVAs. After obtaining each TVA’s optimal tuning parameters based on equal peak transmissibility criteria, the mass off-tuning tests were then performed on the optimally tuned TVAs. In order to off-tune the system, the mass of the primary structure varied from −19% to +19% of its nominal mass using a set of steel plates. Overall, the experimental results show that the semi-active MR TVA outperforms the passive TVA in reducing maximum vibrations. Moreover, the results show that the semi- active TVA is more robust to changes in the primary mass (mass off-tuning) The results further show that the semi-active MR TVA offers larger performance gains as the structure mass increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call