Abstract

The main purpose of this study is to offer a comprehensive off-tuning analysis of a semi-active tuned vibration absorber. A base-excited, single-degree-of-freedom structure with a tuned vibration absorber (TVA) model is adapted as the baseline model for our analysis. Moreover, a non-model based groundhook control (displacement based on-off control or "On-off DBG") is used to control the damping in the TVA. In order to study the effect of off-tuning, numerical models of the damping controlled TVA along with its equivalent passive TVA were developed. Using these models, the optimal tuning parameters of both TVA models were obtained based on minimization of peak transmissibility. The two optimally tuned models were then "off-tuned" by varying the primary structure's mass, stiffness, and damping. Using the peak transmissibility reduction criteria, the dynamic performances of the off-tuned TVAs were evaluated. The results indicate that the peak transmissibility of the semi-active TVA is about 20% lower than that of passive, implying that the semi-active TVA is more effective in reducing vibration levels. The results further indicate that the semi-active TVA is more robust to changes in primary structure mass and stiffness. In summary, the offtuning analyses of the semi-active TVA revealed the practical benefits of using it over the passive counterpart to structures subjected to changes in system parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call