Abstract

The thermal contact conductance across an epoxied copper junction loaded with Ag (silver) particles was investigated at cryogenic temperatures. Thermal contact conductance, or its inverse, thermal contact resistance, consists of two components: thermal contact resistance at the copper/Ag-particle epoxy interfaces, and the thermal conduction resistance across the Ag-particle epoxy slab. The effects of the Ag-particle volume fraction, and the average interface temperature of the epoxied junction are both evaluated. Increasing the Ag-particle fraction increases the conductance above that for a plain epoxied sample, by as much as one order of magnitude for a Ag particle fraction of 30%. A critical Ag particle volume fraction is observed in the measurements, below which value the thermal conductance of the epoxied junction increases only slightly with increasing particle fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call