Abstract

The distributed acoustic sensing (DAS) technology based on phase-sensitive optical time domain reflectometry (Φ-OTDR) has been widely and well applied on land. Meanwhile, the distributed acoustic sensing optical fiber (DASF) based on Φ-OTDR, as a new type of sensor, is still in the initial stage of research, gets much attention in recent years because of its long-distance monitoring, high sensitivity, anti-electromagnetic interference, good concealment and so on. Performances of DASF in sensing different kinds of acoustic source signals were given by experiments in shallow water, which included single frequency pulse signal in the fixed position, the moving single frequency continuous pulse signal, the moving broadband signal, and the signal generated by the sailing surface target. Depth of the active sound source was changed to examine the performance of DASF in sensing signals in different depths. The specific experimental process was given, and the experimental results were processed and analyzed. Additionally, wave components of data generated from of the sailing surface vessel were explored with the time delay difference between the equivalent array elements of DASF. Results show that DASF can sense the above varieties of underwater acoustic signals well, and the physical field generated by the sailing surface vessel in shallow water include acoustic field and flow field, in which the propagation velocity of the former is faster than that of the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call