Abstract

A new generalized complex modified Korteweg–de Vries (mKdV) equation is studied by using Riemann-Hilbert approach. Firstly, we derive a Lax pair associated with a 3 × 3 matrix spectral problem for the generalized complex mKdV equation. Then, we can formulate the Riemann-Hilbert problem via the spectral analysis of the x-part of the Lax pair. According to the symmetry properties of the potential matrix, we find two cases of zero structures for the Riemann-Hilbert problem. By solving the particular Riemann-Hilbert problem and using the inverse scattering transformation, we obtain the unified formulas of the N-soliton solutions for the generalized complex mKdV equation. In addition, the dynamical behaviors of the single-soliton solution and the two-soliton solution are analyzed by choosing appropriate parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.