Abstract
In view of the wide demands of sandwich structure with porous material as core layer in many important fields such as protection engineering, aerospace, automobile manufacturing and ship, etc. In order to reveal the energy absorption and damage characteristics of high velocity impact aluminum foam core and CFRP/aluminum foam core structure, the quasi-static loading system, one-stage light gas gun loading system, the impact pressure testing system and the high-speed camera acquisition system were used to perform the quasi-static compression experiments of aluminum foam and the projectiles with different materials impacting on the aluminum foam core and CFRP/aluminum foam sandwich structure at the speeds of 100–300 m/s. The influences of impact velocity and projectile’ density on the damage characteristics of CFRP/aluminum foam sandwich structure and the attenuation effect of shock wave in sandwich structure have been studied. The experimental results showed that the curve of stress and strain has three typical zones similar to porous materials: elastic zone, yield platform zone and compaction zone under quasi-static compression loading. Due to its brittle and low tensile strength of aluminum foam material, the single aluminum foam plate has poor ballistic performance under the high-speed impact of projectiles with different materials. Therefore, closed cell aluminum foam needs to be combined with high strength panels to form sandwich structure to improve its ballistic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.