Abstract
Vapor compression refrigeration is considered one promising technology for dissipating much higher heat fluxes from electronic devices at lower temperatures. The compressor, one key component, has a great effect on the overall size and performance of the system. One lightweight, miniature, hermetic Wankel compressor was developed to solve limited space cooling problems. The assembled Wankel compressor had a diameter of 65 mm, a length of 85 mm and a weight of 340.2 g, without a motor and housing. An experimental system for miniature refrigeration was set up to explore the optimal refrigerant charge and the performance of the compressor under changing rotational speeds and inlet temperatures of cooling water. The experimental results showed that the optimal refrigerant charge was 220 g and the coefficient of performance was approximately 2.8. The refrigeration coefficient of the system decreased with increases in rotational speed and inlet temperature of the cooling water at a stable cooling capacity of 100 W. The developed lightweight, miniature, hermetic Wankel compressor had reliable performance after running for 600 h, with a power consumption of 35 W and a high coefficient of performance (COP) of 2.63.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.