Abstract

The environmentally friendly modification of gas turbine combustion chambers is a process for altering the structure of combustion, mainly in the primary zone in order to reduce the emission of NOx, CO, and solids into the atmosphere. The ecological modernization of gas turbines that are currently in operation is a continually topical subject because there are several thousand turbine units in Europe that do not meet current emission limits. At the same time, it can be expected that the emission limits for these turbines operating in the European Union will be reduced to NOx≤75 mg/m3, CO≤100 mg/m3 in working range of 40–100% of the gas turbine output after the year 2010. The authors have developed a new construction of a hybrid low-emission natural gas burner. Developmental work was performed both on one burner and also in a burner group consisting of seven hybrid burners. Results will be presented in this paper for model conditions for the atmospheric test rig and their re-calculation to the operational parameters on the real gas turbine. A conception with variable primary section combustion chamber geometry has been used to achieve low emissions in a wide range of gas turbine output allowing the organization of the combustion process with a constant gas/air mixing ratio coefficient. A prototype of a combustion chamber with a hybrid burner group with control of the primary air mass flow has been manufactured and tested in a 6 MW gas turbine operating in a gas pipeline compressor plant. The achieved emission characteristics will be presented and compared with precalculations. The experiments made on the real gas turbine have proven the possibility of meeting the target emission limit performance of NOx≤50 mg/m3, CO≤50 mg/m3. Other possibilities how to reduce harmful emissions for this burner type will be presented in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call