Abstract

Coherently controlling the spectral properties of energy-entangled photons is a key component of future entangled two-photon spectroscopy schemes that are expected to provide advantages with respect to classical methods. We present here an experimental setup based on a grating compressor. It allows for the spectral shaping of entangled photons with a sevenfold increase in resolution, compared to previous setups with a prism compressor. We evaluate the performances of the shaper by detecting sum frequency generation in a nonlinear crystal with both classical pulses and entangled photon pairs. The efficiency of both processes is experimentally compared and is in accordance with a simple model relating the classical and entangled two-photon absorption coefficients. Finally, the entangled two-photon shaping capability is demonstrated by implementing an interferometric transfer function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.