Abstract

Quantum entanglement is a quantum mechanical phenomenon where the quantum state of a many-body system with many degrees of freedom cannot be described independently of the state of each body with a given degree of freedom, no matter how far apart in space each body is. Entanglement is not only considered a resource in quantum information but also believed to affect complex condensed matter systems. Detecting and quantifying multi-particle entanglement in a many-body system is thus of fundamental significance for both quantum information science and condensed matter physics. Here, we detect and quantify multipartite entanglement in a spin 1/2 Heisenberg antiferromagnetic chain in a bulk solid. Multipartite entanglement was detected using quantum Fisher information which was obtained using dynamic susceptibility measured via inelastic neutron scattering. The scaling behaviour of quantum Fisher information was found to identify the spin 1/2 Heisenberg antiferromagnetic chain to belong to a class of strongly entangled quantum phase transitions with divergent multipartite entanglement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.