Abstract

Quantum algorithms are computational routines that exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum factoring algorithm is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the large number of resources required, to date, there have been only four small scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which then qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N = 21. Significantly, the algorithmic output exhibits structure that is distinguishable from noise, in contrast to previous demonstrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.