Abstract

One of the most promising and versatile approaches to creating new quantum algorithms is based on the quantum hidden subgroup (QHS) paradigm, originally suggested by Alexei Kitaev. This class of quantum algorithms encompasses the Deutsch-Jozsa, Simon, Shor algorithms, and many more. In this paper, our strategy for finding new quantum algorithms is to decompose Shor's quantum factoring algorithm into its basic primitives, then to generalize these primitives, and finally to show how to reassemble them into new QHS algorithms. Taking an alphabetic building blocks approach, we use these primitives to form an algorithmic toolkit for the creation of new quantum algorithms, such as wandering Shor algorithms, continuous Shor algorithms, the quantum circle algorithm, the dual Shor algorithm, a QHS algorithm for Feynman integrals, free QHS algorithms, and more. Toward the end of this paper, we show how Grover's algorithm is most surprisingly almost a QHS algorithm, and how this result suggests the possibility of an even more complete algorithmic tookit beyond the QHS algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.