Abstract
Cryptography promises four information security objectives, namely, confidentiality, integrity, authenticity and non-repudiation, to support trillions of transactions annually in the digital economy. Efficient digital signatures, ensuring integrity, authenticity and non-repudiation of data with information-theoretical security are highly urgent and intractable open problems in cryptography. Here, we propose a high-efficiency quantum digital signature (QDS) protocol using asymmetric quantum keys acquired via secret sharing, one-time universal2 hashing and a one-time pad. We just need to use a 384-bit key to sign documents of lengths up to 264 with a security bound of 10-19. If a one-megabit document is signed, the signature efficiency is improved by more than 108 times compared with previous QDS protocols. Furthermore, we build the first all-in-one quantum secure network integrating information-theoretically secure communication, digital signatures, secret sharing and conference key agreement and experimentally demonstrate this signature efficiency advantage. Our work completes the cryptography toolbox of the four information security objectives.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have