Abstract

Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed ‘full introduction’ (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6–8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6–12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13–16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs.

Highlights

  • Mosquito-borne diseases continue to be one of the greatest challenges to global health

  • We used small cage trials to explore the efficacy of non-drive and gene-drive releases to deliver anti-malarial effector genes to a vector mosquito, Anopheles stephensi. We show that both approaches can work to introduce genes to high percentages, but as expected, the gene-drive approaches were more efficient in that they needed only a single release with a much lower number of released insects

  • While none of the strains evaluated here are proposed for open release, these laboratory cage trials reveal features that can be used to improve next-generation gene-drive strains for population modification

Read more

Summary

Introduction

Mosquito-borne diseases continue to be one of the greatest challenges to global health. While efforts in vaccine development and mass drug administration continue, vector control remains the most significant and cost-effective way to protect populations from malaria epidemics [4, 5]. Insecticide resistance is threatening current gains [6, 7] and this has fostered a number of research efforts to develop genetic strategies to control malaria transmission [8, 9]. Each has a long theoretical, and in some cases, practical history in vector control, but the adoption of molecular genetic technologies, including DNA cloning and transgenesis, have brought many of the more speculative approaches closer to applied end-products [11,12,13,14]. A population suppression technology has been tested in field trials [15, 16]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.