Abstract
The system performance of a ground source heat pump (HP) system is determined by the HP characteristics itself and by the thermal interaction between the ground and its borehole heat exchanger (BHE). BHE performance is strongly influenced by the thermal properties of the ground formation, grouting material, and BHE type. Experimental investigations on different BHE types and grouting materials were carried out in Belgium. Its performances were investigated with in situ thermal response tests to determine the thermal conductivity (λ) and borehole resistance (Rb). The line-source method was used to analyze the results, and the tests showed the viability of the method. The main goal was to determine the thermal borehole resistance of BHEs, including the effect of the grouting material. The ground thermal conductivity was measured as 2.21 W m−1 K−1, a high value for the low fraction of water-saturated sand and the high clay content at the test field. The borehole resistance for a standard coaxial tube with cement–bentonite grouting varied from 0.344 to 0.162 K W−1 m for the double U-tube with cement–bentonite mixture (52% reduction). Grouting material based on purely a cement–bentonite mixture results in a high thermal borehole resistance. Addition of sand to the mixture leads to a better performance. The use of thermally enhanced grouts did not improve the performance significantly in comparison with only a low-cost grouting material as sand. Potential future applications are possible in our country using a mobile testing device, such as characteristics, standardization, quality control, and certification for drilling companies and ground source HP applications, and in situ research for larger systems. Copyright © 2011 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.