Abstract

The main obstacles to reverse osmosis desalination processes are high energy intensity and long-term continuity. Temperature and pressure have the greatest and most significant effects on energy use. The main objectives of the current study are to determine the pressure and temperature-dependent optimal operating parameters for a membrane desalination unit. To determine the ideal operating settings for a membrane unit, the impact of changing pressure and temperature on its performance was investigated. These two elements are closely connected to the energy consumption per cubic meter under various operating situations. The present work is experimentally carried out in a research laboratory for capacity building and future research studies in the desalination field established in the National Center of Water Research – Egypt. This laboratory is Egypt’s first multi-functional Desalination Research Station for seawater, brackish water, and related water treatment areas. The plant is equipped with online instrumentation and Data Acquisition System and 13 sensors for most physical parameters which economically affect membrane performance and desalination processes. These parameters, particularly pressure and temperature, are measured, evaluated and analyzed. According to the findings in this study, feed salinity and feed pressure both have significant impacts.At 13 bar pressure, the maximum salt rejection was 98.8%. When feed pressure is increased from 5 to 13 bars, there is a 73.3% decrease in permeate salinity. Additionally, applying a 13 bar feed pressure to water with a salinity of 1000 ppm results in the best water quality of 12 ppm. The relationship between feed pressure, brine salinity, and membrane water recovery appeared to be approximately linear and positive. More crucially, it was discovered that feed pressure, salinity, and water recovery are all constants for water permeability. A prototype for the maximum pressure (ranges from 15.6 to 10.8) and temperature (ranges from 21 to 35) at which the optimal recovery of the laboratory occurred was developed. Moreover, the developed prototype includes the corresponding permeate TDS and a specific energy for each optimal point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.