Abstract
Within hydraulic earth structures (dikes, levees, or dams), internal seepage flows can generate the entrainment of the soil grains. Grain transportation affects both particle size distributions and porosity, and changes the mechanical and hydraulic characteristics of the earth's structure. The occurrence of failures in new earth structures due to internal erosion demonstrates the urgency of improving our knowledge of these phenomena of erosion. With this intention, a new experimental device has been developed that can apply hydraulic stresses to reconstituted consolidated cohesive soils without cracks in order to characterize the erosion evolution processes that might be present. A parametric study was conducted to examine the influence of three critical parameters on clay and sand erosion mechanisms. When the hydraulic gradient was low, it was concluded that the erosion of the structure's clay fraction was due to suffusion. When the hydraulic gradient increased, it was concluded that the sand fraction erosion initiation was due to backward erosion. The extent of the erosion was dependent on the clay content. The study underlines the complexity of confinement stress effects on both erosion phenomena.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have