Abstract

While nano-crystalline diamond (NCD) is a promising engineering composite material for its unique mechanical properties, achieving the ultrahigh surface quality of NCD-based components through conventional grinding and polishing is challenging due to its exceptional hardness and brittleness. In the present work, we experimentally investigate the nanosecond laser ablation-induced graphitization characteristics of NCD, which provides a critical pretreatment method of NCD for realizing its superlative surface finish. Specifically, systematic experimental investigations of the nanosecond pulsed laser ablation of NCD are carried out, in which the characteristics of graphitization are qualitatively characterized by the Raman spectroscopy detection of the ablated area of the microhole and microgroove. Subsequently, the influence of laser processing parameters on the degree and morphological characteristics of graphitization is evaluated based on experimental data and related interpretation, from which optimized parameters for maximizing the graphitization of NCD are then identified. The findings reported in the current work provide guidance for promoting the machinability of NCD via laser irradiation-induced surface modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call