Abstract

In recent years, research has been actively carried out aimed at developing the concept of construction and ways of technical implementation of ground penetrating radars with continuous wave linear-frequency-modulated (LFM) radiation. The key prerequisites for the creation of such systems are the complex consideration of the operating conditions of the radio channel in the near field, including the features associated with multichannel leakage of the probing signal components into the reception path, the presence of multipath reflections from the covering surface, the variable speed of the electromagnetic wave, and the provision of linear processing of a continuous group broadband radio signal with large dynamic range. The paper proposes and describes a scheme of a laboratory stand for LFM GPR research and optimization of the energy characteristics in modes with critical levels of reflections. The results of experiments on the analysis and optimization of the parameters of the end-to-end transfer characteristic of the radio channel are presented. Response studies were performed for two types of antennas at different suspension heights. The responses of the system to an increase in the durtion of the probing pulse and a change in the type of window function were evaluated. An empirical dependence of signal losses during propagation in radio channels of LFM GPR has been established. The conducted studies will improve the energy characteristics of ground penetrating radars with continuous LFM radiation by increasing the detection efficiency of shallow and near-surface objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call