Abstract

We experimentally explore the rich variety of nonlinear coherent structures arising in a turbulent flow of superfluid light past an obstacle in an all-optical configuration. The different hydrodynamic regimes observed are organised in a unique phase diagram involving the velocity of the flow and the diameter of the obstacle. Then, we focus on the vortices nucleated in the wake of the obstacle by investigating their intensity profile and the dependence of the radius of their core on the healing length. Our results pave the way for further investigations on turbulence in photonic superfluids and provide versatile experimental tools for simulating quantum transport with nonlinear light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.